Paradoxic effects of propofol on visceral pain induced by various TRPV1 agonists
نویسندگان
چکیده
Intraperitoneal injection of propofol inhibits subsequent acetic acid-induced writhing response in mice. Propofol increases the sensitivity of dorsal root ganglion neurons to capsaicin through transient receptor potential ankyrin subtype-1 (TRPA1) and protein kinase Cε (PKCε)-mediated phosphorylation of transient receptor potential vanilloid subtype-1 (TRPV1). Intraperitoneal co-injection of propofol may increase visceral nociception induced by TRPV1 agonists via sensitization of TRPV1. Therefore, we investigated the effects of intraperitoneal co-injection of propofol on nociception induced by acetic acid and capsaicin. The number of writhing movements induced by acetic acid or nociception time by capsaicin with or without propofol were counted. Neonatal capsaicin-treated mice were also used to demonstrate the role of TRPV1 in the effects of propofol on nociception, induced by TRPV1 agonists. Co-injection of propofol resulted in a pronociceptive effect on the writhing response induced by acetic acid, while the same dose of propofol ameliorated the response to capsaicin. The writhing response to intraperitoneal acetic acid was sharply inhibited following neonatal treatment with capsaicin. Co-injection with propofol reduced the number of writhing movements induced by acetic acid in neonatal capsaicin-treated mice. These results suggest that propofol binds to TRPV1 at the capsaicin-binding pocket.
منابع مشابه
TRPA1 and TRPV1 contribute to propofol-mediated antagonism of U46619-induced constriction in murine coronary arteries
BACKGROUND Transient receptor potential (TRP) ion channels have emerged as key components contributing to vasoreactivity. Propofol, an anesthetic is associated with adverse side effects including hypotension and acute pain upon infusion. Our objective was to determine the extent to which TRPA1 and/or TRPV1 ion channels are involved in mediating propofol-induced vasorelaxation of mouse coronary ...
متن کاملThe transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not.
The development of antagonists of the transient receptor potential vanilloid-1 (TRPV1) channel as pain therapeutics has revealed that these compounds cause hyperthermia in humans. This undesirable on-target side effect has triggered a surge of interest in the role of TRPV1 in thermoregulation and revived the hypothesis that TRPV1 channels serve as thermosensors. We review literature data on the...
متن کاملTRP Channels in Visceral Pain
Visceral pain is both different and similar to somatic pain different in being poorly localized and usually referred elsewhere to the body wall, but similar in many of the molecular mechanisms it employs (like TRP channels) and the specialization of afferent endings to detect painful stimuli. TRPV1 is sensitive to low pH. pH is lowest in gastric juice, which may cause severe pain when exposed t...
متن کاملInteraction between Cannabinoid Compounds and Capsazepine in Protection against Acute Pentylenetetrazole-induced Seizure in Mice
The pharmacological interaction between cannabinoidergic system and vanilloid type 1 (TRPV1) channels has been investigated in various conditions such as pain and anxiety. In some brain structure including hippocampus, CB1 and TRPV1 receptors coexist and their activation produces opposite effect on excitability of neurons. In this study, we tested the hypothesis that TRPV1 channel is involved i...
متن کاملEFFECTS OF CCK RECEPTOR AGONISTS AND ANTAGONISTS ON MORPHINE-INDUCED ANTINOCICEPTION IN MICE
In the present study the effects of both CCK receptor agonists and antagonists on antinociception induced by morphine in the tail-flick test have been evaluated. M orphine induced dose-dependent antinociception in mice. The response of morphine was potentiated by sulfated cholecystokinin-8 (CCK-8S) but not by unsulfated cholecystokinin-8 (CCK-8U). The CCK receptor antagonists MK-329 and L-...
متن کامل